skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akl, Marx"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how nanoparticles deform under compression not only is of scientific importance but also has practical significance in various applications such as tribology, nanoparticle-based probes, and the dry grinding of raw materials. In this study, we conducted compression tests on model brittle glassy nanoparticles using molecular dynamics simulations. We found that during the early stages of plastic deformation, shear bands formed in a similar pattern regardless of the nanoparticle size. However, as the deformation continued, dominant cracks emerged in large nanoparticles while being suppressed in smaller ones. This size-dependent brittle-to-ductile transition can be explained by a simple model based on Griffith's theory. We also investigated the effect of the surface stress state on fracture using thermally tempered nanoparticles. We observed that the presence of compressive surface stress strengthened the nanoparticle by suppressing crack formation, even when a pre-notch was present. On the other hand, tensile surface stress had the opposite effect. Interestingly, nanoparticles with both tensile and compressive surface stress promoted shear deformation, which could potentially compromise the mechanical performance of tempered glass despite delayed crack formation. 
    more » « less
  2. Understanding how nanoparticles deform under compression is not only of scientific importance, but also has practical significance in various applications such as tribology, nanoparticle-based probes, and dry grinding of raw materials. In this study, we conducted compression tests on model brittle glassy nanoparticles using molecular dynamics simulations. We found that during the early stages of plastic deformation, shear bands formed in a similar pattern regardless of nanoparticle size. However, as the deformation continued, dominant cracks emerged in large nanoparticles while being suppressed in smaller ones. This size-dependent brittle to ductile transition can be explained by a simple model based on Griffith's theory. We also investigated the effect of surface stress state on fracture using thermally tempered nanoparticles. We observed that the presence of compressive surface stress strengthened the nanoparticle by suppressing crack formation, even when a pre-notch was present. On the other hand, tensile surface stress had the opposite effect. Interestingly, nanoparticles with both tensile and compressive surface stress promoted shear deformation, which could potentially compromise the mechanical performance of tempered glass despite delayed crack formation. 
    more » « less